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bias voltage, but leads to a correlation between the RF com-
ponent of AM and FM noise. This is because both quadrature
components of RF noise contribute to FM noise when the device
admittance is RF and bias voltage dependent. Further, the video
component of FM noise is altered by the RF-voltage dependence.

The results indicate that device fabrication for lowest noise
performance should not only be directed toward improved
processing techniques which reduce crystal imperfections and
surface traps, both of which lead to high 1/f noise, but also
toward tailoring the device admittance curves so that at the
desired operating point for a particular application the RF-
voltage variation cf the admlttance is large and the bias-voltage
variation is small.

ACKNOWLEDGMENT

The author wishes to thank Dr. W. R. Curtice for his con-
tributions to this work.

REFERENCES

[1]1 W. A. Edson, “Noise in oscillators,” Proc. IRE, vol. 48, pp. 1454-1466,
August 1960.

[2] J. A. Mullen, “Background noise in nonlinear oscillators,” Proc. IRE,
vol. 48, pp. 1467-1473, August 1960.

[3] B. van der Pol, “The nonlinear theory of electric oscillations,” Proc.
IRE, vol. 22, pp. 1051-1086, September 1934,

4] M. Lax, “Classical noise. V. Noise in self-sustamed oscillators,” Phys.
Rev., vol. 160, pp. 290-307, August 10, 1

51 K. Kurokawa “Noise in synchromzed oscﬂlators,” IEEE Trans.
Microwave Theory Tech., vol. MTT-16; pp 234-240, April 1968.

[6] W. Schockley, J. A. Copeland and R. James, *“The 1mpedance
field method of noise calculation in active semlconductor devices,”
Quantum Theory of Atoms, Molecules, and the Solid State. New York
Academic, 1966.

[71 H. J. Thaler, G. Ulrich, and G, Wiedmann, “Noise in IMPATT diode
amplifiers and oscillators,” IEEE Trans. Microwave Theory and Tech.,
vol. MTT-19, pp. 692-706, August 1971.

i8] M T. Vlaardmgerbrock and J. J. Goedbloed, “On the theory of noise

n IMPATT diode oscillators,” Philips Research Report, vol. 25,
pp 452-471, 1970.

91 K. Mouthaan and H. J. M. Rijpert, ‘“Non-linearity and noise in the

A.T.T. oscillator,” Philips Research Report, vol. 26, pp. 394-413, 1971.

[10] J. J. Goedbloed, “On the up-converted noise of IMPATT diode
oscillators,” Proc. of MOGA Conf., Amsterdam, pp. 12.36-12.40, 1970.

[111 , “FM noise of low level operating IMPATT diode oscillators,”
Electronics Letters, vol. 7, no. 16, pp. 445-446, August 12, 1961.

[12} G. Convert, ‘A non-linear theory of noise in Read diodes,” Proc. IEEE,
vol. 59, pp. 1266-1267, August 1971,

{13] M. T. Vlaardingerbrock, “Theory of oscillator noise,”
Letters, vol. 7, no. 21, pp. 648-650, October 21, 1971.

{141 A. A. Sweet, “A general analysis of noise in Gunn oscillators,”
Proc. IEEE (Letters), vol. 60, pp. 999-1000, August 1972.

[15] H. A. Haus, H. Statz, and R. A. Pucel, “Noise in Gunn oscillators,”
IEEE Trans. Electron Devices, vol. ED-20, pp. 368-370, April 1973.

[16] W. B. Davenport, Jr., Probability and Random Processes: An Introduc~
tltgn for Applied Scientists and Engineers. New York: McGraw-Hill,

Electronics

[17] A. Papouhs, Probability, Random Variables and Stochastic Processes.
New York: McGraw-Hill, pp. 430-452, 1965.

On Some Integral Relationships for Commensurate
Transmission-Line Networks

EDWARD G. CRISTAL, SENIOR MEMBER, IEEE

Abstract—Several integral relationships are presented for commen-
surate transmission-line networks. The integrals focus onm the fact that
Z(1) for such networks, where Z(S) is the input immittance of the network,
is associated with a real or redundant unit element prefacing the network.
Three bandwidth restrictions are derived. Some applications of the integral
relationships are presented.,
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For commensurate transmission-line networks it is convenient
to use Richards [1] variable S, where

S tanh {rs/2} = Y +iQ;

Tt 21/v, the round-trip delay for the shortest commensurate
length line;

1 length of the shortest commensurate length line;

v velocity of propagation;

s o + iw, the complex frequency variable of lumped-clement
networks.

Richards proved that driving-point immittances (impedances or
admittances) Z(S) are rational functions of .S and are positive
real. In this short paper we consider several integral relationships
for general immittance functions Z(.S) expressible in the form

Z(S) = F(S) + M(S)
F(S) = Foster preamble
A_° L 24_.*§
= 4,°8 + 221 4 oot Meudil
! s k2=:1 52 + Q2
2 . n
M(S) — ag + als + azs + + a,,,S ,
bo + b1S + b2S2 + M + bmSm

n=morm— 1.

Also, at infinity, M (S) can be expanded into

lim M(S) = m, +—-—- +

4o,
S— S S2

The first integral, and one of primary interest, is

Z(S)
where C is the Bromwich [2] contour consisting of the > =

axis, and the infinite semicircle enclosing the RHP. By Cauchy’s
theorem, (1) is

. ~i® Z(iQ)i dQ M2 Z(S) dS
miz(l) = f vyl fD LSS
too -7

Details of evaluating the RHS of the previous equation are
given in the Appendix. The final result is

A
=11 + Q2
2)
Z(iQ). On the “‘real-frequency axis”

L
z()y = 2 M+A°°+A_1+2}_‘
7[092+1

where R(Q2) + iX(Q) =
S =iQ=itan 8

where 6 = wl/v is the electrical length. Substitution into (2)
results in
Z(1) =3f”/21<(0)d0+ AR 4 A0 42 Y A
7 Jo =11+ Q2
(3)

The integral on the RHS of (3) is the average of R(6) over =/2 rad.
Hence, transposing, (3) states

k

— A_% - 4~
1+Qk ! !

avg Z(I) -2 Z (4)

Thus, the average value of the real part of Z(S) over =/2 rad
equals Z(1) less the weighted values of the residues of its Foster
preamble. Equations (2)—(4) are particularly useful forms since
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Z(1) can be interpreted as the characteristic immittance of a unit
element [3] prefacing the Z network.

WEAK-LIMIT BANDWIDTH LAwWS

Equations (3) and (4) may be used to derive a “weak-limit”
bandwidth law applicable to all networks having a positive-real
input immittance, and a less general weak-limit bandwidth law
applicable to a restricted class of networks.

Assume a voltage source E, having internal resistance R,
delivering energy to an arbitrary network N having a positive-
real input immittance. The available power from the source is

E,2/AR,. The power into N is E2R,/|R; + Ry, + ]Xml The
ratio of input to available power is
4R Ri dr n
Pin/Pavail = 12 n 1 &)

IRI + R_in + j‘Xinl2 ,1 + ¥in + jxinl2

with r;, = R, /R, and x;, = X,,/R,. Integrating (5) from 0 to
7/2 and multiplying by 2/x gives

2 (™2 2 (2 4ry, do
- Py [Poyay d6 = = %
7 Jo o |1+ rg + jxil

<2 (¥ _4n, do
h T Jo (1 + rin)z )

In order to utilize (4), the RHS of (6) is replaced by the weaker
inequality

(6)

®/2
2 f A d6_ o f Mra do + UM)  (7)
mJo (14 ry?
where
' M slope of the linear function Mry,;

U(M) maximum of {4r, /(1 + ry)? — Mry}onrg, = 0.

The function U(M) can be interpreted as the maximum un-
certainty in replacing

2 T2 Ay, dO
n 0 (1 + rin)z

2 /2
-— f Mrm dG.
T Jo

by

Combining (4), (6), and (7) gives

2 /2
- f Pin/Pavail do
7 Jo

= {Pin/Pavail}avg
M o L At

=< Z(1) — A{® — A_ -2 —_— 8
o GO -2 s @

with a maximum uncertainty of U(M).!
By the same procedures but on an admittance basis we obtain

2 (=/2
;fo

{Pin/Pavail }avg

M {Y(l) ~B®-B_,° -2
1

Pin/Pavail do

L’ B._ 1k’
k; a+ QA

1A

} )

! It is shown later how to choose an optimum M.
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with a maximum uncertainty of U(M). Because the imaginary
part of the input immittance of N cannot in general be cancelled,
and because (7) is typically a weak inequality, (8) and (9) have
been designated as weak-limit bandwidth laws. Define the term -
“weak-limit” as the smaller of the RHS of (8) and (9). Then the
weak-limit bandwidth law can be stated succinctly as follows.

The averaged normalized power into an arbitrary network
having a positive-real input immittance is less than or equal the
weak limit, Mathematically,

2 /2
)

If the network N represents a lossless 2-port terminated in a
resistive load, the power into N must be absorbed by the load.
In that case, the integrand on the LHS of (10) is the absolute
value squared of the 2-1 scattering coefficient. Thus, for lossless
networks N, the weak-limit bandwidth law is

2 /2
z f 1S,112 d6 < the weak limit,
0

[

Pin/Pavass 90 < the weak limit. (10)

an
The lowest bound in the weak limit is obtained as follows.
Note in (8) and (9) that the weak limit is of the form
weak limit = Mx + UM).

Consequently, for a given x the lowest bound occurs for an M
satisfying

d—U+x—0
M
or
au
x_,—-—..
M

For convenience in solving the previous equation, —dU/dM is
plotted in Fig. 1. The uncertainty function U(M) is given in
Fig. 2. Note that both functions are monotonic decreasing from
1 to 0 as M ranges from 0 to 4.

Therefore, knowing x, a value of M, is obtained from Fig. 1,
and the value U(M,) from Fig. 2. Then the lowest bound on the
weak-limit is

Mox + U(Mo).

A second weak-limit bandwidth law can be derived for net-
works where the input immittance has nonzero real part and no
poles or zeros on the jQ axis. In these cases

2 7/2
:

Poant/ P d6 = 2 fm L+ r + jxl®
avail. in
T

o 4rin
/2 2
> 2 f A+ rg)® 4o (12)
7 Jo 4rin
NOW, l/rin = (gin2 + binz)/gin = gln Thus
2 ("2 + 1) d0 _ 2 [ gill + rin)? dO
T Jo 4rin - T Jo 4 )
Substituting into (12) gives the weaker inequality
'2 /2 1 (2 /2
2 f Prvat/Pra 48 > 1 {— f (G + 2 + 1) d0} a3
T Jo 4 T 0

Combining (13) and (4)

/2 K i
2 f Pavatt/Pra 0 = $(3(1) + 2 + (D)},
T Jo
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Fig. 2. Uncertainty function U(M) versus M.

But (1) = 1/z(1). Thus, after simplification, the final inequality

18
/2
.’;

Equation (14) has the advantage over (8) and (9) in that there is
no additional uncertainty function. However, it is valid only for
a restricted class of network immittances.

In view of the previous results, it is perhaps instructive to
look at a specific example. Let R, = 1 Q, and network N be a
2-section quarter-wave transformer terminated in a 10-82 resis-

2

4

a + z(y)?

Poyait/ P dO = 42

14

tance. Young’s tables [4] give Z(1) = 1.794. The LHS of (10)
was evaluated by dividing the interval 0 to n/2 into 18 equal
segments and using Simpson’s quadrature on the analytical
(Chebyshev) response. The result was LHS = 0.676. The least
weak limit is obtained by using Fig. 1 to solve

~9YU _ 11794 = 0.557.
aM

The answer is M, = 0.47. From Fig. 2, U(M, = 0.47) = 0.655.
Thus

weak limit = 0.47(0.557) + an uncertainty of 0.655
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or
least weak limit = 0,262 + 0.655 = 0.917.
Thus the LHS is somewhat less than the weak limit, as anticipated.
Inequality (14) is also applicable to this example. By similar
numerical procedures the LHS of (14) was found to be 1.753.
The RHS is 1.088. Thus (14) is also easily satisfied.
RETURN-LOsS BANDWIDTH RESTRICTION

Using the previous results, the average return loss may be
computed. We consider the integral

In I'(S) ds
S22 -1

where I'(S) is the reflection coefficient of a given network N. The
reflection coefficient may be expressed

@15)

F(S) = Al_[i(s — Zi)
Hk S -

where z;, p; are in general complex, Re (p,) < 0, but the Re (z;)
unrestricted. It can be shown that the same final result is obtained
for negative A as positive 4. We treat the latter case here. Two
separate cases are considered.

Case I: Re (z;) < 0 for all i. Then, by (4),

2 /2
_f In [T(9)] d0 = In |T(1)).
7 Jo

(16)

an

Case II: Re (z)) > Ofor I < i < I'. In this case, following
Bode’s procedure [5], we form

~ F (S + 2
r(s) = r(S)i[JI ES——;% (18)
Note that
IT(S)| = [T(S)| for S =iQ.
Therefore, by (4),
Zf"’z In |T(0)] d6 = In |T(1)| + In f‘[ L+ 2 9
7 Jo =1l — z

The first term on the RHS of (19) is always less than zero, while
the second term on the RHS of (19) is always greater than zero.
Thus Cases I and II can be conveniently expressed in the single

inequality
/2
z f In
T Jo

Equation (20) states: the average return loss in nepers over ©/2 rad
is less than or equal the return loss at S = 1.

It is interesting to note that if the first element of the network
N is a unit element of characteristic impedance Z, the average
return loss cannot exceed‘

1

o © = In (20)

1
Tl

In

@n

Z+1
Z-1

regardless of the remainder of N.

An important consequence can be drawn from these results
regarding the bandwidth of cascaded, stepped-impedance trans-
formers and directional couplers. For impedance transformers
one desires to minimize I" over the matching bandwidth., How-
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ever, the average return loss cannot exceed (21). Thus, the gain-
bandwidth performance of the transformer is limited (at least)
by the impedance levels of the first and last quarter-wavelength
lines. ]

For a cascaded directional coupler, I for the even-mode input
impedance is in one-to-one correspondence with the coupling
coefficient of the coupler. In this case, one wishes " to be con-
stant over as wide a bandwidth as possible. But, again, the
average coupling (In |1/T’|) cannot exceed (21). Thus the band-
width of the coupler is limited (at least) by the even-mode
impedance of the first and last coupling sections. The afore-
mentioned limits may be weak limits depending on the zeros
of the reflection coefficient, but in all cases they cannot be
exceeded.

MEASUREMENT APPLICATIONS

In addition to providing bandwidth information on Z, (2)-(4)
can be utilized in certain measurement methods. For example, (3)
and (4) suggest a simple CW procedure for measuring the charac-
teristic impedance of an unknown transmission line. Consider a
transmission line of unknown characteristic impedance R,
terminated in an arbitrary real load R;. At a suitable reference
plane
Ry, + RS

Z(S) = R
® *R, + RS

= M(S)

in this case, A_;® = 4,° = A_* = 0. Therefore,

2 /2
Za) = R, = 2 f R(0) d = Ry
T Jo

Thus a measurement of R(6) averaged over /2 rad equals the
characteristic impedance of the line. Note that knowledge of the
value of R; is not required. An advantage of this CW approach
is that averaging the measurements tends to reduce random
measurement errors.

For a second example, consider a network consisting of a line
(characteristic impedance R) terminated by a shunt stub (charac-
teristic admittance C) in parallel with a real load R;. Evaluation
of (4) for the average of R,, and G, yields

{Rin}avg = R/(l + RC)
{Rnlag =G+ C, (G=1R (22)
{Gin}avg = G. (23)

A possible application of the latter results is to the experimental
determination of self- and mutual-capacitance (and hence
coupling) of some coupled-line geometries. Consider the network
shown in Fig. 3. The relationships between the equivalent-circuit
parameters (which correspond to the current example) and the
coupled-line capacitance parameters are

l’Cll = G + C (24)

vCyp = VC(G + O). 25)

Thus CW measurements of {R;, }m_vg and {G;, }“s together with
(22)-(25) yield the coupled-line parameters. Numerous other
examples are possible.

ADDITIONAL INTEGRAL RELATIONSHIPS

Other potentially useful integral relationships may be estab-
lished by selecting other integrands. Three are given as follows:
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Fig. 3. Symmetrical coupled-line geometry and equivalent circuit.
for the integrand of APPENDIX

S{Z(S) — A4,°S]
52 -1
the result is
2 [ QX(Q) — Q%4,”
_ o . = joimaiolh i AN stadet S
20 — A - fo 1+ 02

If F(S) = 0, for an integrand of M2(S)/[S? - 1], the result is

dQ + my,. (26)

/2
M) = %J; [R*(8) — X*(6)] 4. @27

For an integrand of [M(S) — m., I*/[S% ~ 1], the result is
T/2

M) — m,]? = %f [R(O) — R(z/2)]* — X?*(0) d6. (28)
0

Equation (26) involves solely the imaginary part of Z;,, but the
integrand cannot be conveniently transformed into a function of
0. Equations (27) and (28) interrelate the real and imaginary
parts of Z;,. Equation (27) is interesting in that it reveals that
the difference in the average of R;,% and X2 is exactly equal to
[Z(1)]? for cases where Z has no Foster preamble.

CONCLUSIONS

Use of the weighting function (S2 — 1)~ in contour integrals
of positive-real network immittance functions resulted in several
new network interrelationships and 3 bandwidth constraints.
The integral relationships can be used in the CW determination
of network parameters in certain cases. Some specific results
were as follows,

1) For a network preceded by a unit element, the average real
part of the input immittance is less than, or equal to, the charac-
teristic immittance of the unit element.

2) In general, the average of the real part of the input immit-
tance Z(S) is equal to Z(1) less the weighted residues of its Foster
preamble,

3) In general,

2 w2
.

4) For networks whose input immittance has nonzero real
part and no poles or zeros on the jQ axis,

Py Poyan; d9 < the weak limit (as defined in the text).

2 (™2 1+ z(]?
it Poyait/Pip dO = ——————.
”fo ava l/ n 42(1)
5) In general,
1
In|—| df <In|—]|.
') rd)

Let Z(S) = F(S) + M(S) be a positive-real immittance defined
in the text. By Cauchy’s theorem

qj Z(S)

where C is the Bromwich contour consisting of the 3. = 0 axis
and the infinite semicircle enclosing the RHP. The LHS of (A-1)

expands to

—-ico /2

J‘ R(GQ) -{2- iX(3iQ) . ;dO + J‘D f’(S)_ ds.

i -Q° —- 1 —n/2 S -1
On the iQ axis R is even and X is odd so that the first term in
(A-2) simplifies to
e}
2i R(©)
o Q2 +1

+iQy, Z(S) may be written

dS inZ(1) (A-1)

(A-2)

dQ. (A-3)

At complex conjugate poles,

2,4_1 S

k

(A-4)

In the vicinity of the imaginary axis conjugate poles, the paths of
integration are infinitesimal semicircles of radius r, centered
at the poles, and extending into the RHP. The contribution from

the semicircular path at S = i€}, is
“®2 (24 kS =z ds
lim o124+ Z(S A-5
Hofgm {s2+92 <)}S2 (A-5)
with S = rexp (i0) — iy, and dS = ir exp (i6) dd. In the limit

(A-5) equals inA_*/(€,2 + 1). At the conjugate pole there is an
equal contribution so that the total for L conjugate poles on the
imaginary axis is

on § A=t (A-6)
i2n . -
=1l + Q2
For a pole at the origin the corresponding integral is
—-n/2 0

lim f) {A“l + Z(S)} _zig__

r—-0 2 S S — 1
and its contribution is

inAd_,° (A-7)

The second term of (A-2) is evaluated by selecting a finite semi-
circular contour of radius r, centered at the origin, and taking
the limit as r - oo, For large .S, Z(S) can be expanded

Z(S) = A,°S + my + Z(S).



468

Substitution into the second term of (A-2) gives

(A-8)

. RE2 5 ds
lim {A4,°S + my + Z(8)} 57—
=00 ‘_1l:/2 S 1

with S = r exp (i6), and dS = ir exp (i) d0. In the limit (A-8)
reduces to

iﬂAlw . (A'9)

Collecting (A-1), (A-2), (A-6), (A-7), and (A-9) and simplifying
gives the result

© .
zQ) = zf —f(—f)—ldg + AR+ A

7T Jo
L A k
2 =1 . (A-10
kgl 1 + ka ( )
Substitution of tan () for Q in (A-10) gives
2 /2
Za) = _f RO) 0 + A + A_,°
T Jo
L A k
2 Lo (A-11
kgl 1 + ka ( )
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A Note on the Finite-Element Solution of Exterior-Field
Problems

Z. J. CSENDES, MEMBER, IEEE

Abstract—An approximate closed-form expression corresponding to
the energy functional in an infinite exterior region satisfying Laplace’s
equation is derived for use with the finite-element method. This expression
simplifies the treatment of exterior-field problems in numerical cal-
culations. The expression is given in terms of a few numerical matrices
and logarithmic functions.

v

I. INTRODUCTION

A number of problems in electromagnetics can be formulated
in terms of an interior region and an exterior region satisfying
Laplace’s equation with boundary conditions at infinity. Several
methods have been developed for the numerical treatment of
these problems, including boundary relaxation [1]-[4], [7] and
exterior finite-element methods [5], [6]. A common feature of
all of these methods is the solution of the problem in terms of
a finite, bounded region called a “‘picture frame” and the use
of Green’s functions to determine picture-frame boundary
conditions.
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There are two competing approaches to the selection of picture-
frame regions and the use of Green’s function boundary con-
ditions. In one approach, first proposed by Silvester and Hsiech
[5], a single picture frame is defined and the energy-functional
contribution of the entire region exterior to this picture frame is
evaluated and added to the interior-region energy functional.
The solution is therefore obtained by considering the field in all
space, but by explicitly solving for the field only in the region
interior to the picture frame. In the other approach, proposed
by McDonald and Wexler [6], two concentric picture frames
are defined and the integral equation relating the potentials
between the two picture frames is used to specify the boundary
conditions on the outer picture frame. Fields outside of the
outer picture frame are never considered in the solutionh process;
the integral equation merely provides a relationship between
internal field values.

As developed in the references, however, the energy functional
in the exterior region is evaluated by using an integral trans-
formation and weighted Gaussian quadrature formulas. The
programming requirements of this procedure are relatively
difficult and have limited the application of the technique. In
this short paper, the value of the exterior-field energy functional
is expressed in closed form. The programming requirements of
these closed-form expressions are much less than that of the
original transformation-quadrature procedure; hence, the avail-
ability and utility of exterior-field finite-clement solutions is
increased.

II. THE EXTERIOR-FIELD FUNCTIONAL

It is shown in [5] that the energy functional corresponding to
the exterior of a finite-element mesh embedded in a space where
Laplace’s equation applies is given by

Fg = aRQ ™ 'Ra” )

where a is a row vector of potential coefficients on the edge of
the finite-elemient mesh and R and Q are the symmetric matrices

R

1

SE BT()B(x) dx @)

Q

ff jﬁ BTG, EBE) de dx. ®

In these equations, f(x) is a row vector -composed of the inter-
polation polynomials corresponding to the coefficients @ and

G(x,8) = 2% In|x ~ ¢ )

&

where |x — £| indicates the distance between point x and point &,
The matrices R and @ in (2) and (3) may be converted into
finite-element form by noting that

. .
Bx) = hzl B®(x) )
where f™(x) is a row vector containing the interpolation poly-
nomials for element 2 (B®(x) = 0 if x is outside element /) and
N is the number of elements on the boundary. By making the
substitution z = x/L, where L, is the length of the exterior side
of element %, the interpolation polynomials g®(x) may be
written as :

BP(zLy) = p(@)T (6)



